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1 Introduction to Distribution Theory

1.1 Weak solutions to PDEs

For the next month or so, our goal will be to study linear, constant coefficient PDEs

P (∂)u = f, P (∂) =
∑
|α|≤m

cα∂
α.

We will first take a detour to study the theory of distributions. First, some motivation:

Example 1.1. Recall the transport equation{
(∂t +Aj∂j)u = 0

u(0) = u0

with constant coefficients Aj . The characteristics are given by ẋ = A, which gives x(t) =
x(0) + tA. This means that u̇ = 0 along these characteristics, so u(x(t), t) = u(x(0), 0). In
other words,

u(x, t) = u0(x− tA).

Classically, if u0 ∈ C1, then u ∈ C1. What if u0 ∈ C? It doesn’t make sense to say
that the solution u is continuous because we need to take derivatives. If we interpret the
equation as a directional derivative, u0 ∈ C gives a solution. This interpretation relies
strongly on the specific problem. Can we treat this problem in general?

Suppose we have a smooth function ϕ ∈ C∞0 . We can write the equation as the condition∫
Rn+1

(∂t +Aj∂j)uϕdx = 0,

where a function is 0 if it integrates to be 0 against all ϕ ∈ C∞0 . Now integrate by parts
to get

−
∫
Rn+1

u(∂t +Aj∂j)ϕdx = 0, ∀ϕ ∈ C∞0 ,

which applies to all u ∈ C. Our continuous solution will be a solution to this integral
equation.
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Definition 1.1. u is a weak solution to a PDE if the corresponding integral equation
holds for all ϕ ∈ C∞0 .

Example 1.2. Recall the Burgers equation

ut + uux = 0, u(0) = u0.

The characteristics are given by ẋ = u and u̇ = 0. The characteristics will intersect, and
at the point of intersection of characteristics, the solution will start to develop a jump
discontinuity, known as a shock.

In this problem, if we think of the equation as a directional derivative, the derivative along
the characteristics are different when they intersect, so we cannot get a solution. However,
we can similarly look for a weak solution by integrating by parts as before. When we do
this, we want to think of uux as 1

2∂x(u2).

1.2 Topologies on vector spaces

The key idea in the theory of distribution is that we can think of a function u : Rn → R
as a linear map on all ϕ ∈ C0(Rn) via

u(ϕ) :=

∫
Rn

u · ϕdx.

Observe that if u(ϕ) = 0 for all ϕ, then u = 0.
We will use the notation D = C∞0 to refer to the smooth functions with compact

support. Obesrve that D is a linear space. What is the topology of D? Recall that C is a
normed space, with

‖u‖C = sup
x∈Rn

|u(x)|.

Recall:

Definition 1.2. A normed space is a vector space V , with a norm map ‖ · ‖ : V → R
(or C) satisfying

(a) ‖u‖ ≥ 0, with equality iff u = 0.
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(b) ‖λu‖ = |λ|‖u‖ for all λ ∈ R (or C).

(c) ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

We obtain a metric space structure, given by d(u, v) = ‖u−v‖. Recall that complete-
ness of a metric space means that every Cauchy sequence is convergent.

Definition 1.3. A Banach space is a complete normed space.

Here is a special class:

Definition 1.4. A Hilbert space is a vector space with a complete inner product 〈u, v〉 =
u · v.

In a Hilbert space, we get a norm by

u · u = ‖u‖2 ≥ 0.

Example 1.3. The L2 space is given by

L2(Rn) =

{
u : Rn → R |

∫
|u|2 dx <∞

}
.

This space is a Hilbert space, given the inner product

u · v =

∫
Rn

uv dx

(with v replaced by v in the complex case).

Hilbert spaces are a special case of Banach spaces, but a single space can have different
norm structures on it.

Example 1.4. We can equip Rn with the norm ‖v‖2 =
∑

j v
2
j which comes from the

usual dot product (a Hilbert space structure). We can also equip Rn with the Lp norm
‖v‖p =

∑
j |vj |p with 1 ≤ p <∞, which gives a Banach space structure.

Example 1.5. Ck is a Banach space with the norm

‖u‖ = sup
|α|≤K

sup
x∈Rn

|∂αu(x)|.

Returning to our objective, what norm can we give C∞(Rn)? We can define

‖u‖α = pα(u) := sup
x∈Rn

|∂αu(x)|.

The problem is that we have infinitely many of these. What would un → u mean in
C∞(Rn)? We want to say that ∂αun → ∂αu uniformly for all α.

The solution is to use all the ‖·‖α as seminorms, which satisfy all the norm conditions
except for ‖u‖ = 0 =⇒ u = 0.
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Definition 1.5. Locally convex spaces are vector spaces equipped with a family of
seminorms. A complete, locally convex space is called a Fréchet space.

In a locally convex space,

pα(u) = 0 ∀α =⇒ u = 0.

Why is this called a “locally convex space”? The idea is that each seminorm gives you
neighborhoods of points, which may not be nested in each other for different seminorms.
But these are all convex neighborhoods, and we can intersect these neighborhoods to get
more convex neighborhoods around every point.

The picture of our function spaces looks like

Hilbert spaces ( Banach spaces ( Fréchet spaces.

Example 1.6. We will use the notation E = {u ∈ Rn → R | u is smooth}. Here, we ask
for nothing at ∞. What does un → u mean in E? We can define this as ∂αun → ∂αu
uniformly on compact sets. For this space, we need to use the collection of seminorms

pα,K(u) = sup
x∈K
|∂αu(x)|, α ∈ Nd,K compact.

We don’t need to check all compact sets; it suffices to take nested balls with radius going
to ∞. With this topology, E is a locally convex space.

For D, we have an issue: if we have a sequence of functions of compact support, the
support may grow to not be compact in the limit. To solve this, there is a notion called
the inductive limit of locally convex spaces, essentially cooked up only to describe D. To
make a long story short, we describe convergence in D as un → u in D if

(a) ∂αun → ∂αu uniformly.

(b) There is a compact set K such that suppun ⊆ K.

Remark 1.1. If u ∈ C(Rn) and ϕ ∈ D, the map ϕ 7→ u(ϕ) =
∫
uϕdx is continuous.

Definition 1.6. The space of distributions, denoted D′ or D∗ is the space of linear,
continuous f : D → R.

This seems to separate us from our original goal. If we have a function, we can get a
distribution, but if we have a distribution, we can’t always get a function back; instead,
we get generalized functions.1

1The term “distribution” comes from the French school, whereas the term “generalized functions” comes
from the Russian school.
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1.3 Examples of distributions

Here are some examples of distributions.

Example 1.7. The Dirac mass at 0 is

δ0(ϕ) = ϕ(0).

Example 1.8. Another distribution is

δ′0(ϕ) = −ϕ′(0).

The reason for the minus sign will become apparent later on. In general, we can define

δ(α)x (ϕ) = (−1)|α|∂αϕ(x).

The space D′ of distributions is a linear space.2 It has the topology of weak conver-
gence: fn → f in D′ if

fn(ϕ)→ f(ϕ) ∀ϕ ∈ D.

Example 1.9. Can we approximate δ0 with functions? This may shed some light on what
generalized functions look like. Let

un(x) =

{
n/2 x ∈ [−1/n, 1/n]

0 otherwise.

Here,
∫
un = 1 for all n. If we try to take the limit in the sense of distributions, we get (in

1 dimension):

un(ϕ) =

∫
un · ϕ dx

2You should think of the prime as a notion of duality of vector spaces.
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=
n

2

∫ 1/n

−1/n
ϕ(x) dx

=
1

2

∫ 1

−1
ϕ(y/n) dx

n→∞−−−→ ϕ(0),

so un(ϕ)→ δ0(ϕ). That is, un → δ0.

Remark 1.2. In Rn, we could use

uε =
1

εncn
1B(0,ε), cn = |B(0, 1)|.

In n dimensions, this has size ∼ 1/εn.

Remark 1.3. We could also use D functions. If ϕ ∈ D with
∫
ϕ = 1, then we can define

the rescaled function (at scale ε)

ϕε(x) =
1

ε
ϕ(x/ε).

Here is the picture:

By the same argument, ϕε → δ0 in D′.

Next time, we will see how we can think of distributions as solutions to PDEs. This
will require knowing things like how to differentiate distributions.
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